Dynamical Pictures
- Quantum Mechanics 1.6

Dynamical Pictures

from 「Modern Quantum Mechanics」: Sakurai, J. J.

Several equivalent pictures to interpret quantum mechanics.

Time-evolution operator

The time-evolution operator $U(t,t_0)$ is defined as the operator which acts on the ket at time $t_0$ to produce the ket at some other time $t$:

  • $ \ket{\Psi(t)}=\hat{U}(t,t_0)\ket{\Psi(t_0)} $
  • $ \bra{\Psi(t)}=\bra{\Psi(t_0)}\hat{U}^\dag(t,t_0) $

Properties

  1. Unitarity
    • $ \hat{U}^\dag(t,t_0)\hat{U}(t,t_0) = \mathbb{I} $
  2. Identity
    • $ \hat{U}(t_0,t_0) = \mathbb{I} $
  3. Closure
    • $ \hat{U}(t,t_0)=\hat{U}(t,t_1)\hat{U}(t_1,t_0) $

Differential equation for time-evolution operator

We drop the $t_0$ index in the time evolution operator with the convention that $t_0=0$ and write it as $U(t)$.

Using the Schrödinger equation, we get the differential equation of $U$.

\[ i\hbar\pdv{ }{t}\hat{U}(t)\ket{\Psi(0)} = \hat{H}\hat{U}(t)\ket{\Psi(0)} \]

\[ \Rightarrow i\hbar\pdv{ }{t}\hat{U}(t) = \hat{H}\hat{U}(t) \]

If the Hamiltonian is independent of time, the solution to the above equation is:

\[ \hat{U}(t) = \exp\left( -\frac{it}{\hbar}\hat{H} \right) \]

If the Hamiltonian is dependent on time, but the Hamiltonians at different times commute, then the time evolution operator can be written as:

\[ \hat{U}(t) = \exp\left( -\frac{i}{\hbar}\int_0^t\hat{H}(t\rq)dt\rq \right) \]

If the Hamiltonian is dependent on time, but the Hamiltonians at different times do not commute, then the time evolution operator can be written in following form where $\mathcal{T}$ is time-ordering operator, which is sometimes known as the Dyson series.

\[ \hat{U}(t) = \mathcal{T}\exp\left( -\frac{i}{\hbar}\int_0^t\hat{H}(t\rq)dt\rq \right) \]

See the wiki for more information. (Dyson series)

Dynamical pictures

Dynamical pictures (or representations) are the multiple equivalent ways to mathematically formulate the dynamics of a quantum system.

Schrödinger picture

Schrödinger picture is a method of fixing the observable and interpreting the state vector to change over time.

  • Ket state: $ \ket{\Psi_S(t)}=\hat{U}(t)\ket{\Psi_S(0)} $
  • Observable: constant

Heisenberg picture

Heisenberg picture is a method of fixing the state vector and interpreting that the observable changes over time.

  • $ \expct{\hat{A}}_t = \brktop{\Psi(t)}{\hat{A}}{\Psi(t)} = \brktop{\Psi(0)}{\hat{U}^\dag(t)\hat{A}\hat{U}(t)}{\Psi(0)} $
  • $ \hat{A}_H(t) \coloneqq \hat{U}^\dag(t)\hat{A}\hat{U}(t) $

Let’s find out then how the expectation value of an observable changes over time.

\[ \begin{align*} \odv{ }{t} \hat{A}_H(t) &= \pdv{\hat{U}^\dag}{t}\hat{A}\hat{U} + \hat{U}^\dag\pdv{\hat{A}}{t}\hat{U} + \hat{U}^\dag\hat{A}\pdv{\hat{U}}{t} \nl &= \frac{i}{\hbar}\hat{U}^\dag\hat{H}\hat{A}\hat{U} + \hat{U}^\dag\pdv{\hat{A}}{t}\hat{U} + \frac{i}{\hbar}\hat{U}^\dag\hat{A}(-\hat{H})\hat{U} \nl &= \frac{i}{\hbar}\left(\hat{H}\hat{A}_H-\hat{A}_H\hat{H}\right) + \left(\pdv{\hat{A}}{t}\right)_H \end{align*} \]

\[\therefore\; \boxed{ \odv{ }{t}\hat{A}_H(t) = \frac{i}{\hbar}\comm{\hat{H}}{\hat{A}_H(t)} + \left(\pdv{\hat{A}}{t}\right)_H }\]

In conclusion,

  • Ket state: constant
  • Observable: $ \hat{A}_H(t)=\hat{U}^\dag(t)\hat{A}\hat{U}(t) $

Interaction picture


⚠️writing⚠️
https://en.wikipedia.org/wiki/Dynamical_pictures

Comparison of pictures

EvolutionPicture  
 Schrödinger (S)Heisenberg (H)Interaction (I)
Ket state$ \ket{\Psi_S(t)}=e^{-i\frac{\hat{H}_S}{\hbar}t}\ket{\Psi_S(0)} $constant$ \ket{\Psi_I(t)}=e^{i\frac{\hat{H}_0}{\hbar}t}\ket{\Psi_S(t)} $
Observableconstant$ \hat{A}_H(t)=e^{i\frac{\hat{H}_S}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}_S}{\hbar}t} $$ \hat{A}_I(t)= e^{i\frac{\hat{H}_0}{\hbar}t}\hat{A}_S e^{-i\frac{\hat{H}_0}{\hbar}t} $